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Abstract. We generalize our previous model for γ∗p scattering to γγ scattering. In the latter case the
number of components naturally grows. When using the model parameters from our previous γ∗p analysis
the model cross section for γγ scattering is larger than the corresponding LEP2 experimental data by more
than a factor of two. However, performing a new simultaneous fit to the γ∗p and γγ total cross section we
can find an optimal set of parameters to describe both processes. We compare predictions of our model
with experimental γ∗γ total cross-section data. We propose new measures of factorization breaking for
γ∗γ∗ collisions and present results for our new model.

1 Introduction
In the last decade the photon–proton and photon–photon
reactions became a testing ground for different quantum
chromodynamics (QCD)-inspired models. The dipole
model was one of the most popular and successful in this
respect. In the simplest version of the model only quark–
antiquark Fock components of the photon are included to
describe the total cross sections. In contrast, the more ex-
clusive processes, such as diffraction [1], jet [2] or heavy
quark [3] production, require the inclusion of higher Fock
components of the photon. The higher Fock components
can be of both perturbative and nonperturbative nature,
and therefore are rather difficult to include in a system-
atic manner.

In our recent publication [4] we constructed a simple
hybrid model which includes the resolved photon compo-
nent in addition to the quark–antiquark component. With
a very small number of parameters we were able to describe
the HERA γ∗p total-cross-section data with an accuracy
similar to that of very popular dipole models [5–9]. The
advantage of our model is that it treats the total cross
section and the exclusive processes on the same footing.

The notion of the resolved photon is general and applies
not only to photon–proton collisions. In the present paper
we try to generalize our hybrid model to photon–photon
collisions. Our approach is similar in spirit to the approach
of [10] although the details differ considerably.

2 Formulation of the model
2.1 γ∗p scattering

First, let us recall our model for the total cross section for
γ∗p collisions. In this model the total cross section is a sum
of three components,

σtot
γ∗N (W, Q2) = σtot

dip(W, Q2) + σtot
VDM(W, Q2)

+σtot
val(W, Q2) (1)

where:

σtot
dip(W, Q2) (2)

=
∑

q

∫
dz

∫
d2ρ

∑
T,L

∣∣∣ΨT,L
γ∗→qq̄(Q, z, ρ)

∣∣∣2 · σ(qq̄)N (x, ρ)

and

σtot
VDM(W, Q2) =

∑
V

4π

γ2
V

M4
V σV N

tot (W )
(Q2 + M2

V )2
· (1 − x). (3)

All components of our model are illustrated graphically
in Fig. 1. The last component becomes important only at
large x, i.e. small W .

We take the simplest diagonal version of VDM with
ρ, ω and φ mesons included. As discussed recently in [11]
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Fig. 1. The graphical illustration
of the multicomponent γ∗p scat-
tering model
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the contributions of higher vector states are expected to
be damped. Above the meson–nucleon resonances it is rea-
sonable to approximate

σρN
tot (W ) = σωN

tot (W ) =
1
2

[
σπ+p

tot (W ) + σπ−p
tot (W )

]
, (4)

with a similar expression for σtot
φp [12]. A simple Regge

parametrization of the experimental pion–nucleon cross
section by Donnachie and Landshoff is used [13]. As in [12]
we take γs calculated from the leptonic decays of vector
mesons, including finite-width corrections. The factor (1−
x) is meant to extend the VDM contribution towards larger
values of Bjorken x.

2.2 γ∗γ∗ scattering

In the same spirit, the total cross section for γ∗γ∗ scattering
can be written as a sum of the following five terms (see
Fig. 2):

σtot
γ∗γ∗(W, Q2

1, Q
2
2) = σtot

direct(W, Q2
1, Q

2
2) +

+σdip−dip(W, Q2
1, Q

2
2) +

+σtot
SR1(W, Q2

1, Q
2
2) +

+σtot
SR2(W, Q2

1, Q
2
2) +

+σtot
DR(W, Q2

1, Q
2
2). (5)

The direct term, which is not possible in the case of photon–
proton scattering, is related to a new (compared to the pre-
vious case) possibility of a γγ → quark + antiquark process,
and can be written formally as a sum over quark flavors

σtot
direct(W, Q2

1, Q
2
2) =

∑
f

σγγ→qf q̄f
(W, Q2

1, Q
2
2) . (6)

The corresponding formulae have been known for a long
time and can be found in [14].

If both photons fluctuate into perturbative quark–anti-
quark pairs, the interaction is due to gluonic exchanges
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Fig. 2. The graphical illustration of the multicomponent γ∗γ∗

scattering model

between quarks and antiquarks represented in Fig. 2 by
the blob.

Formally this component can be written in terms of the
photon perturbative wavefunctions and the cross section
for the interaction of both dipoles

σtot
dip−−dip(W, Q2

1, Q
2
2) =

Nf∑
a,b=1

∫ 1

0
dz1

∫
d2ρ1|Ψa

T (z1, ρ1)|2

·
∫ 1

0
dz2

∫
d2ρ2|Ψ b

T (z2, ρ2)|2

×σa,b
dd (x̄ab, ρ1, ρ2). (7)

The latter quantity is not well known. It can be easily cal-
culated in the simplest approach of two-gluon exchange.
At high energies such an approach cannot be sufficient,
as gluonic ladders become essential. Due to the large de-
gree of complexity a phenomenological attitude seems in-
dispensable. In the paper [15] a new phenomenological
parametrization for the azimuthal-angle-averaged dipole–
dipole cross section has been proposed:

σa,b
dd (xab, ρ1, ρ2) = σa,b

0

[
1 − exp

(
− ρ2

eff

4R2
0(xab)

)]

· Sthresh(xab) . (8)

Here

xab =
m2

a

z1
+ m2

a

1−z1
+ m2

b

z2
+ m2

b

1−z2
+ Q2

1 + Q2
2

W 2 + Q2
1 + Q2

2
(9)

and

R0(xab) =
1

Q0

(
xab

x0

)−λ/2

. (10)

Our formula for xab is different from that used in [15]. As
discussed in [3] our formula provides correct behavior at
threshold energies.

In order to take into account threshold effects for the
production of qq̄q′q̄′ an extra phenomenological function
has been introduced [15]

Sthresh(xab) = (1 − xab)5 (11)

which is set to zero if xab > 1. Different prescriptions for
ρeff have been considered in [15], with ρ2

eff = ρ2
1ρ2

2
ρ2
1+ρ2

2
being

probably the best choice [15]. Following our philosophy of
explicitly including the nonperturbative resolved photon,
in photon–photon collisions completely new terms must
be included (the last two diagrams in Fig. 2). If one of the
photons fluctuates into a quark–antiquark dipole and the
second photon fluctuates into a vector meson, or vice versa,
we shall call such components single-resolved components.
In γγ scattering there are two such components:

σtot
SR1(W, Q2

1, Q
2
2) =

∫
d2ρ2

∫
dz2

∑
V1

4π

f2
V1

(
m2

V1

m2
V1

+ Q2
1

)2
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· ∣∣Ψ(ρ2, z2, Q
2
2)

∣∣2 σtot
V1d(W, Q2

2) , (12)

σtot
SR2(W, Q2

1, Q
2
2) =

∫
d2ρ1

∫
dz1

∑
V2

4π

f2
V2

(
m2

V2

m2
V2

+ Q2
2

)2

· ∣∣Ψ(ρ1, z1, Q
2
1)

∣∣2 σtot
V2d(W, Q2

1) . (13)

In the formulae above:

σtot
Vid(W, Q2) = σ0

(
1 − exp

(
− ρ2

i

4R2
0(xg)

))
· Sthresh (14)

where

R0(xg) =
1

Q0
·
(

xg

x0

)λ/2

(15)

and, to a good approximation,

xg =
M2

qq + Q2

W 2 + Q2 (16)

with

Mqq =
m2

f

z(1 − z)
, (17)

where mf is the quark effective mass. In the present cal-
culation we take mf = m0 for u/ū and d/d̄ (anti)quarks
and mf = m0+ 0.15 GeV for s/s̄ (anti)quarks.

If each of the photons fluctuates into a vector meson the
corresponding component will be called double-resolved. 1

The corresponding cross section reads formally:

σtot
DR(W, Q2

1, Q
2
2) =

∑
V1V2

4π

f2
V1

(
m2

V1

m2
V1

+ Q2
1

)2

(18)

· 4π

f2
V2

(
m2

V2

m2
V2

+ Q2
2

)2

σtot
V1V2

(W ) .

The total cross section for V1–V2 scattering must be
modeled. In the following we shall assume Regge factor-
ization and use a simple parametrization which fits the
world experimental data for hadron–hadron total cross sec-
tion [13]. It was demonstrated recently that in, the case of
the total cross sections, the absorption corrections violate
the factorization only marginally [17]. Assuming factoriza-
tion and neglecting the off-diagonal terms due to the a2-
reggeon exchange we obtain a simple and economical form

σtot
V1V2

(W ) = AR

(
s

s0

)αR−1

+ AIP

(
s

s0

)αIP−1

(19)

with AR = 13.2 mb and AIP = 8.56 mb, αR = 0.5, αIP =
1.08, s = W 2, s0 = 1 GeV2.

3 Results

In [4] we adjusted the parameters of our model to γ∗p
collisions. Let us try to use these parameters to describe

Fig. 3. The total γγ cross section as a function of photon–
photon energy with parameters from [4]. The experimental data
are from [19,20]

the γγ total cross section. In Fig. 3 we present the total
cross section as a function of center-of-mass energy. The
sum of all components of Fig. 2 (thick solid line) exceeds
the experimental data by a factor of two or more. The in-
dividual components are also shown explicitly. The direct
component (dash-dotted line) dominates at low energies
only. At high energies the dipole–dipole (thin solid line),
single-resolved (dashed line) and double-resolved (dotted
line) components are of comparable size. The overestima-
tion of the experimental data suggests a double counting.

Let us try to recapitulate the assumptions and/or ap-
proximations used in obtaining the formulae of the previ-
ous section. First of all it was assumed that the coupling
constants responsible for the transition of photons into
vector mesons are the same as those obtained from the
leptonic decays of vector mesons, i.e. the on-shell approx-
imation was used. In our case we need the corresponding
coupling constants at Q2 = 0 instead and not on the me-
son mass shell (Q2 = m2

V ). In principle, there can be a
weak modification by a Q2-dependent function. We replace
4π
f2

Vi

→ 4π
f2

Vi

Foff(Q2, m2
Vi

) and propose to parameterize the

effect of extrapolation from meson mass shell to Q2 = 0
by means of the following form factor:

Foff(Q2, m2
Vi

) = exp
(

− (Q2 + m2
Vi

)
2Λ2

E

)
. (20)

The parameter ΛE is a new nonperturbative parameter of
our new model. Secondly, the photon wavefunctions com-
monly used in the literature allow for large quark–antiquark
dipoles. This is a nonperturbative region where the pQCD
is not expected to work. Furthermore this is a region which
is probably taken into account in the resolved photon com-
ponents as explicit vector mesons. Therefore large dipoles
must be removed from the photon wavefunctions. We pro-

1 In some early works in the literature this was considered as
the only component to the photon–photon total cross section
(see for instance [16]).
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pose the following modification of the perturbative photon
wavefunction:

∣∣Ψ(ρ, z, Q2)
∣∣2 → ∣∣Ψ(ρ, z, Q2)

∣∣2 exp
(

− ρ

ρ0

)
, (21)

which effectively suppresses large quark–antiquark dipoles.
In the following we shall try to find the parameters

ΛE and ρ0 by fitting our modified model formula to the
experimental data. The γγ data is not sufficient for this
purpose as different combinations of the two parameters
lead to equally good description. Therefore we are forced
to perform a new fit of the model parameters to both γ∗p
and γγ scattering.

Naively one could try to adjust the new parameters in
(20) and (21) to describe the photon–photon data only.
However, internal consistency would require associated
modifications in γ∗p collisions. It is obvious that such mod-
ifications would destroy the nice agreement with the HERA
data [18] as obtained in [4]. It becomes clear that a new
simultaneous fit of the extended model to both γ∗p and γγ
is unavoidable. It is not clear a priori that a good-quality
fit is possible at all.

To quantify the quality of the simultaneous fit we pro-
pose the following simple measure of fit quality:

χ2
eff =

χ2
γ∗p

Nγ∗p
+ χ2

γγ

Nγγ

2
. (22)

This is a bit ad hoc statistically, but treats the γ∗p and
γγ processes with the same weight, which seems reasonable
in view of the disproportionate size of the γ∗p and γγ data
sets. In the present fit in addition to the HERA [18] data
for γ∗p scattering we also include the PLUTO [19] and
OPAL [20] collaboration data for γγ scattering.

In Tables 1, 2 we have collected the values of minimal
standard χ2 for different pairs of the newly defined param-
eters of the extended model: ρ0 and ΛE . Each value of χ2

is supplemented with the values of the remaining model
parameters (σ0, x0 and λ) which we have not presented
in the table for clarity. A rather good description of both
processes can be obtained. However, the smallest values of
χ2 for both processes are situated in different parts of the
two tables. In Table 3 we display the effective χ2 defined by
(22). Here the minimal value of the proposed measure χ2

eff
is at ρ0 = 5.0 GeV−1 and ΛE = 1 GeV for which χ2

eff = 1.7.
In Fig. 4 we show the resulting total cross section for the

Table 1. χ2 in γ∗p scattering

ΛE

0.5 1.0 2.0 ∞
1.0 104.0 59.0 23.0 11.0
2.0 51.0 22.0 4.7 2.4
3.0 28.0 8.7 2.4 2.5

ρ0 4.0 19.0 5.0 2.3 3.0
5.0 10.0 2.1 2.4 3.0
6.0 7.2 1.8 2.5 3.3
∞ 2.1 2.2 4.6 8.3

Table 2. χ2 in γγ scattering

ΛE

0.5 1.0 2.0 ∞
1.0 14.0 5.2 0.7 1.2
2.0 12.0 2.3 1.8 5.0
3.0 9.8 1.1 4.4 8.1

ρ0 4.0 7.9 1.0 2.6 12.0
5.0 6.8 1.6 8.9 13.0
6.0 5.7 2.4 11.0 16.0
∞ 1.5 19.0 43.0 59.0

Table 3. χ2
eff in γ∗p and γγ scattering

ΛE

0.5 1.0 2.0 ∞
1.0 59.0 32.0 12.0 6.1
2.0 32.0 12.0 3.3 3.7
3.0 19.0 4.9 3.4 5.3

ρ0 4.0 14.0 3.0 2.5 7.5
5.0 8.4 1.3 5.7 8.0
6.0 6.5 2.1 6.5 9.7
∞ 1.8 11.0 24.0 34.0

Fig. 4. The total γγ cross section as a function of photon–
photon energy with the new set of parameters. The experimental
data are from [19,20]

photon–photon scattering together with the experimental
data of the PLUTO (solid triangles) and OPAL (open cir-
cles) collaborations. We also show the individual contribu-
tions of different processes from Fig. 2. Please note that the
relative size of the contributions has changed compared to
Fig. 3. Now the sum of the so-called single-resolved com-
ponents dominates over a broad range of center-of-mass
energies. It is worth stressing in this context that these
components are included here for the first time. When
compared to Fig. 3 the double-resolved component is now
much weaker and only constitutes 10–15% of the total cross
section. For completeness in Fig. 5 we show the analogous
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Fig. 5. The total γ∗p cross section as a function of photon–
proton energy. The experimental HERA data are from [18]

Fig. 6. The total γ∗γ
cross section as a func-
tion of photon virtu-
ality. The experimental
data are from [21]

description of the γ∗p data. The agreement with the HERA
data is similar to that in our previous paper [4].

In our fit of model parameters we have included γ∗p and
γγ experimental data. In the following we shall compare
the predictions of our model for total cross sections for one
virtual–one real photon with existing experimental data.
These data are usually presented as the photon structure
function F2. To facilitate a comparison of our results with
the data we have transformed the structure function data
to γ∗γ total cross sections.

Let us start with low-energy data. In Fig. 6 we show the
total cross section for γ∗γ as a function of photon virtuality.
The PLUTO collaboration experimental data [19] were
measured in the center-of-mass energy range 3 GeV < W <
10 GeV. We show results of our model calculations for the
limiting energies W = 3 GeV (solid line) and W = 10 GeV
(dashed line). The lines corresponding to the two selected
energies surround the PLUTO experimental data points.

In Fig. 7 we show the total γ∗γ cross section as a func-
tion of center-of-mass energy for several values of photon
virtuality. The experimental data are taken from [21–24].

a) b)

c) d)

e) f)

Fig. 7a–f. The total γ∗γ cross section as a function of photon–
photon energy for different values of photon virtuality. The
experimental data are from [21–24]

We show both total cross section (thick solid line) as well as
all four individual contributions to the total cross section:
dipole–dipole (thin solid), dipole–vector (dashed), vector–
vector (dotted) and direct (dash-dotted). Bearing in mind
the rather large error bars, the agreement of our multicom-
ponent model with the data seems rather good.

Below we shall discuss some consequences of our mul-
ticomponent model in the case when both photons are vir-
tual.
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4 Factorization breaking

In data processing, in particular in extrapolations to small
photon virtualities one often assumes the following relation

σtot
γ∗γ∗(W, Q2

1, Q
2
2) = Ω(Q2

1) · Ω(Q2
2) · σ(W ) (23)

known as factorization. This relation is strictly true for
single-pole double-resolved VDM components and means
total decorrelation of Q2

1 and Q2
2. In the following we shall

consider two quantities which measure factorization break-
ing.

The first one reads

f
(1)
fb (W, Q2

1, Q
2
2) ≡ σγ∗γ∗(W, Q2

1, 0) σγ∗γ∗(W, 0, Q2
2)

σγ∗γ∗(W, Q2
1, Q

2
2) σγ∗γ∗(W, 0, 0)

.

(24)
For the factorized Ansatz (23) f

(1)
fb (W, Q2

1, Q
2
2) = 1 for any

Q2
1 and Q2

2. On the other hand factorization breaking means
that, except if Q2

1 = 0 or Q2
2 = 0, the function f

(1)
fb �= 1. This

quantity may be difficult to measure at present as it requires
knowledge of the cross section for real photons, which is
not possible with present e+e− colliders and the detectors
used. We hope this quantity can be used in the future with
the help of the photon–photon option at TESLA [25].

The second quantity 2 is

f
(2)
fb (W, Q2

1, Q
2
2) ≡ σγ∗γ∗(W, Q2

1, Q
2
1) σγ∗γ∗(W, Q2

2, Q
2
2)

σγ∗γ∗(W, Q2
1, Q

2
2) σγ∗γ∗(W, Q2

2, Q
2
1)

.

(25)
As in the previous case it is easy to check that with the
factorized Ansatz (23) f

(2)
fb (W, Q2

1, Q
2
2) = 1 for any Q2

1 and
Q2

2. The effect of factorization breaking is limited through
the following normalization condition

f
(2)
fb (W, Q2, Q2) = 1 . (26)

In this case factorization breaking means that, except if
Q2

1 = Q2
2, the function f

(2)
fb �= 1. Therefore it becomes clear

that this quantity becomes interesting if Q2
1 � Q2

2 or Q2
1 �

Q2
2. The secondquantitymeasures formally (de)correlations

of both photons virtualities. In principle, this quantity can
be used in the analysis of existing experimental data from
DESY, SLAC or LEP.

Both quantities proposed for measuring factorization
breaking require knowledge of the total cross section not
only for real photons but also for virtual ones. Before we
present the quantities in question we wish to display the
total photon–photon cross section as a function of both
photon virtualities. In Fig. 8 we show the corresponding
maps for two quite different energies W = 10 GeV and
W = 100 GeV in the measurable range of photon virtual-
ities. Two observations can be made here. First, the two
maps look rather similar. Secondly, fast fall-off is observed
at photon virtualities 0 < Q2 < 1 GeV2, with further de-
creases being much softer.

The factorization-breaking function f
(1)
fb is shown in

Fig. 9 as a function of both photon virtualities Q2
1 and

2 A similar quantity has been used to study factorization
breaking of a color dipole BFKL approach [26] to highly virtual
photon–highly virtual photon scattering.

a) b)

Fig. 8a,b. Maps of the total γ∗γ∗ cross section as a function
of both photon virtualities Q2

1 and Q2
2 for W = 10 GeV (left

panel) and W = 100 GeV (right panel)

a) b)

Fig. 9a,b. The maps of the factorization-breaking function
f

(1)
fb as a function of both photon virtualities Q2

1 and Q2
2 for

W = 10 GeV (left panel) and W = 100 GeV (right panel)

Q2
2 for W = 10 GeV (left panel) and W = 100 GeV (right

panel). According to the definition (24) atQ2
1 = 0 or Q2

2 = 0
we have f

(1)
fb = 1. The rapid variation of the function is not

best represented by our rough grid. For completeness the
second proposed function is shown in Fig. 10. By definition
this time (see (25)) we have f

(2)
fb = 1 when Q2

1 = Q2
2. As in

the previous case fast variation occurs at small photon vir-
tualities.

Having understood the general behavior we wish to fo-
cus on the most interesting parts of the (Q2

1, Q
2
2) space. In

Fig. 11 we show the behavior of the two-dimensional func-
tion f

(1)
fb (Q2

1, Q
2
2) along the diagonal Q2 = Q2

1 = Q2
2 and

in Fig. 12 f
(2)
fb (0, Q2) = f

(2)
fb (Q2, 0) along the line Q2 = Q2

2
(Q2

1 = 0). The thick solid line represents our full model
with all components included. For illustration we have also
shown factorization-breaking functions for separate mech-
anisms (components in the expansion (5)). Quite a different
behavior can be observed for different mechanisms. Let us
concentrate first on the f

(1)
fb function. While the single-

resolved and direct components grow with Q2 the dipole–
dipole component decreases. Paradoxically, the total f

(1)
fb

is smaller than that for the dipole–dipole component. This



T. Pietrycki, A. Szczurek: Resolved photon and multicomponent model for γ∗p and γ∗γ∗ scattering at high energies 109

a) b

Fig. 10a,b. The maps of the factorization-breaking function
f

(2)
fb as a function of both photon virtualities Q2

1 and Q2
2 for

W = 10 GeV (left panel) and W = 100 GeV (right panel)

a) b)

Fig. 11a,b. Factorization-breaking function f
(1)
fb as a function

of Q2 (Q2 = Q2
1 = Q2

2) for W = 10 GeV (left panel) and
W = 100 GeV (right panel)

a) b)

Fig. 12a,b. Factorization-breaking function f
(2)
fb as a function

of Q2
2 (Q2

1 = 0) for W = 10 GeV (left panel) and W = 100 GeV
(right panel)

surprising result is related to the nonlinearity of the quite
complicated function f

(1)
fb (Q2, Q2) which in fact involves

four correlated points in the (Q2
1, Q

2
2) plane. A completely

opposite behavior can be seen for f
(2)
fb . This has a simple

analytic explanation. Substituting Q2
1 = Q2 and Q2

2 = Q2

into (24) and Q2
1 = 0 and Q2

2 = Q2 or Q2
1 = Q2 and Q2

2 = 0
into (25) we find:

f
(1)
fb (W, Q2, Q2) =

1

f
(2)
fb (W, 0, Q2)

=
1

f
(2)
fb (W, Q2, 0)

. (27)

5 Conclusions

In our previous paper we constructed a simple model for the
γ∗p total cross section which, in contrast to other models
in the literature, includes the resolved photon component.
The latter is known to be the necessary ingredient when
discussing exclusive reactions. In the present paper we have
generalized the model to the case of γγ scattering. In the
last case a few new components appear that have not yet
been discussed in the literature.

The naive generalization of our former model for the
γ∗p total cross section leads to a serious overestimation
of the γγ total cross sections. In general, this fact can
be due either to the nonoptimal set of model parameters
found in our previous study or/and due to some model
simplifications. For instance, it is customary that model
parameters for the resolved photon component obtained
in the vector meson dominance approach are taken from
vector meson dileptonic decays, i.e. on the meson mass
shell. In the γ∗p and γγ processes, of interest to us, vec-
tor mesons are rather off-shell. Therefore one could expect
some off-shell effects. Calculating such off-shell effects in
nonelementary processes is not a simple task. In this paper
we have suggested to include such an effect by introducing
new form factors which we call off-shell form factors for
simplicity. On the other hand, when including the quark–
antiquark continuum, one usually takes into account the
perturbative quark–antiquarkphotonwavefunction.This is
justified and reasonable for small dipoles only. The physics
of large dipoles must involve nonperturbative effects, which
may lead to double counting in our model. To avoid double
counting the large dipoles must be eliminated. We reduce
their contribution using a simple exponential function in
transverse dipole size. Summarizing, the two new functions
bring in two new model parameters. Having this freedom we
have performed a new fit of our generalized-model param-
eters to the γ∗p and γγ experimental data. The generaliza-
tion of the model for meson off-shell effects and large-dipole
effects discussed above permits a simultaneous description
of both processes considered.

When trying to extrapolate the experimental cross sec-
tions for the γ∗γ∗ scattering to real photons one often as-
sumes factorization. Our multicomponent model violates
this assumption. We have quantified the effects of fac-
torization breaking in our model with parameters fixed
to describe the γ∗p and γγ data. We have proposed two
functions which can be used as a measure of factorization
breaking. We have found a strong effect, rather weakly
dependent on the center-of-mass γ∗γ∗ energy. An experi-
mental search for such effects could teach us more about
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reaction mechanisms. Certainly, this is not an easy task
with the LEP2 apparatus.
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